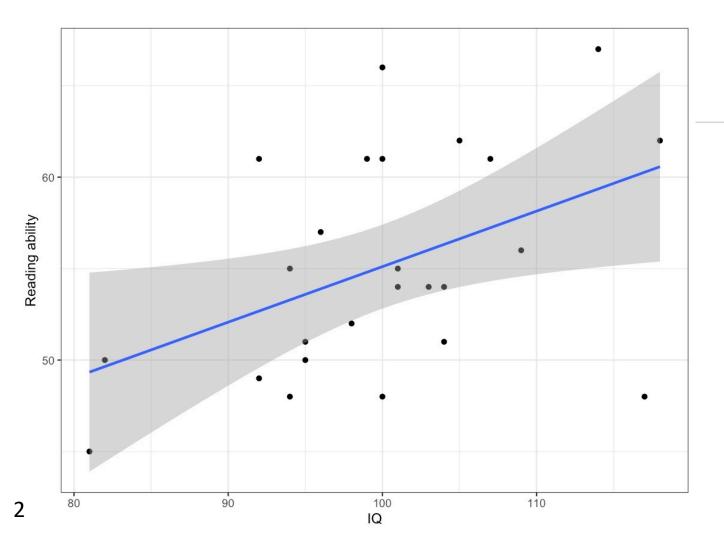


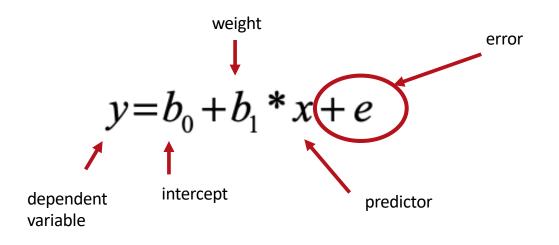
How to build a linear model in R

Dr. Margriet A. Groen



The data – Miller Haden

>


> head(mh)				·*
# A tibble: 6	× 5			
Participant	Abil	IQ	Home	TV
<db1></db1>	<db1></db1>	<db1></db1>	<db1></db1>	<dbl></dbl>
1 1	61	107	144	487
2 2	56	109	123	608
3 3	45	81	108	640
4 4	66	100	155	493
5 5	49	92	103	636
6 6	62	105	161	407

Regression line

Building the model in R

$$y = b_0 + b_1 * x + e$$

```
# Run the code to build the regression model
mod <- lm(Abil ~ IQ, data = mh)
mod_summary <- summary(mod)
mod_summary</pre>
```



```
2.1
           .
                        . . .
> mod_summary
Call:
lm(formula = Abil ~ IQ, data = mh)
Residuals:
   Min
            10 Median
                           3Q
                                  Max
-12.268 -3.590 -1.411 3.767 10.892
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 24.7517 12.5745 1.968
                                       0.0612 .
IQ
            0.3036 0.1252 2.425
                                       0.0236 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 5.547 on 23 degrees of freedom
Multiple R-squared: 0.2036, Adjusted R-squared: 0.1689
F-statistic: 5.878 on 1 and 23 DF, p-value: 0.02359
```



```
2.1
> mod_summary
Call:
lm(formula = Abil ~ IQ, data = mh)
Residuals:
   Min
            10 Median
                           3Q
                                  Max
-12.268 -3.590 -1.411 3.767 10.892
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 24.7517 12.5745 1.968
                                       0.0612 .
IQ
            0.3036 0.1252 2.425
                                       0.0236 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 5.547 on 23 degrees of freedom
Multiple R-squared: 0.2036, Adjusted R-squared: 0.1689
F-statistic: 5.878 on 1 and 23 DF, p-value: 0.02359
```

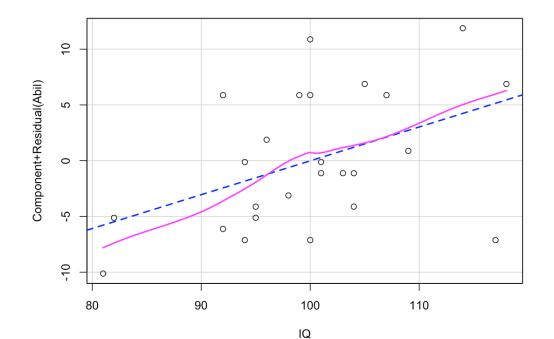
6


```
2.1
> mod_summary
Call:
lm(formula = Abil ~ IQ, data = mh)
Residuals:
   Min
            10 Median
                          3Q
                                 Max
-12.268 -3.590 -1.411 3.767 10.892
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 24.7517 12.5745 1.968
                                       0.0612 .
IQ
            0.3036 0.1252 2.425
                                       0.0236 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 5.547 on 23 degrees of freedom Multiple R-squared: 0.2036, Adjusted R-squared: 0.1689 F-statistic: 5.878 on 1 and 23 DF, p-value: 0.02359


```
2.1
> mod_summary
Call:
lm(formula = Abil ~ IQ, data = mh)
Residuals:
   Min
                           3Q
            1Q Median
                                 Max
-12.268 -3.590 -1.411 3.767 10.892
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 24.7517 12.5745 1.968
                                       0.0612 .
IQ
            0.3036 0.1252 2.425
                                       0.0236 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

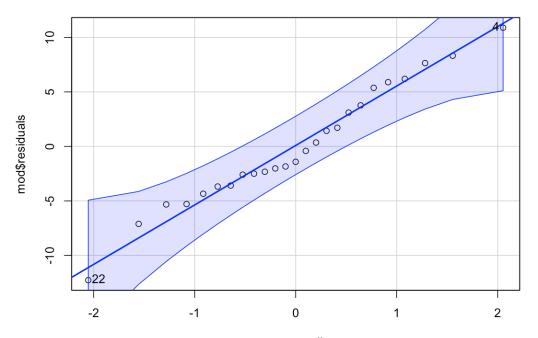
Residual standard error: 5.547 on 23 degrees of freedom Multiple R-squared: 0.2036, Adjusted R-squared: 0.1689 F-statistic: 5.878 on 1 and 23 DF, p-value: 0.02359


8

Checking assumptions - linearity

crPlots(mod)

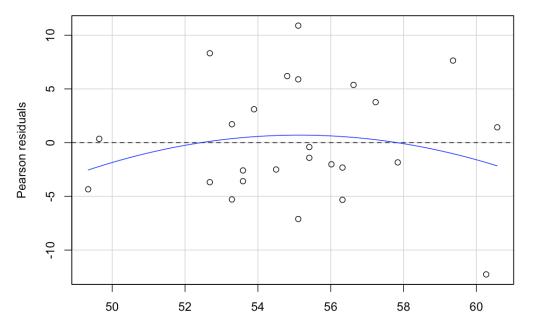
Plot linear line and line that best fits the data to check the relationship between outcome and predic



Checking assumptions – residuals normally distributed?

qqPlot(mod\$residuals)

Create qg-plot to check residuals are normally distributed


norm quantiles

Checking assumptions – Do the residuals show constant variance?

residualPlot(mod)

Create residual plot to check residual show homoscedasticity

Fitted values

A simple linear regression was performed with reading ability (M = 55.12, SD = 6.08) as the outcome variable and IQ (M = 100.04, SD = 9.04) as the predictor variable. The results of the regression indicated that the model significantly predicted reading ability (F(1, 23) = 5.88, p = .024, $R^2 = 0.20$), accounting for 20% of the variance. IQ was a significant positive predictor ($\beta = 0.30$, p = .024).