

Multiple regression

Dr. Margriet A. Groen

Outline

- Regression line with multiple predictors
- Example
- Standardized coefficients
- Assumptions
- Adjusted R²

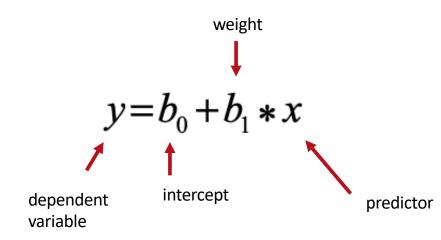
Linear regression

... is a statistical method used to create a linear model

... there are different types:

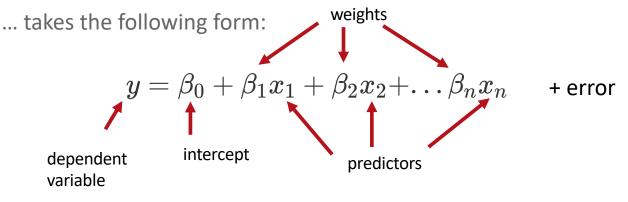
- Simple linear regression: models using only one predictor
- Multiple linear regression: models using multiple predictors
- Logistic regression: models a categorical response variable
- Multivariate linear regression: models for multiple response variables

Regression line



The linear model

... can apply to any research question where you are trying to predict a continuous variable of interest (the response or dependent variable) on the basis of one or more other variables (the predictor or independent variables)



Example

head(diamonds)

##	weight	clarity	color	value	value.lm	weight.c	clarity.c	V
## 1	9.3	0.88	4	182	186	-0.55	-0.12	
## 2	11.1	1.05	5	191	193	1.20	0.05	
## 3	8.7	0.85	6	176	183	-1.25	-0.15	
## 4	10.4	1.15	5	195	194	0.53	0.15	
## 5	10.6	0.92	5	182	189	0.72	-0.08	
## 6	12.3	0.44	4	183	183	2.45	-0.56	

 $eta_{Int} + eta_{weight} imes weight + eta_{clarity} imes clarity + eta_{color} imes color$

Nathanial D. Phillips YaRrr! The Pirate's Guide to R https://bookdown.org/ndphillips/YaRrr/regr ession.html

Example: linear regression with lm()

Argument	Description				
formula	A formula in the form $y \sim x1 + x2 +$ where y is the dependent variable, and x1, x2, are the independent variables. If you want to include all columns (excluding y) as independent variables, just enter $y \sim .$				
data	The dataframe containing the columns specified in the formula.				

```
# Create a linear model of diamond values
```

```
# DV = value, IVs = weight, clarity, color
```


Example: output

# Print summar	y statistics	from dia	nond mode	el		
<pre>summary(diamon</pre>	ds.lm)					
##						
## Call:						
## lm(formula	= value ~ wej	ight + cla	arity + d	color, data =	= diamonds)	>
##						
## Residuals:						
## Min	10 Median	3Q	Max			
## -10.405 -3	.547 -0.113	3.255	11.046			
##						
## Coefficient	s:					
##	Estimate Sto	1. Error †	t value H	Pr(> t)		
<pre>## (Intercept)</pre>	148.335	3.625	40.92	<2e-16 ***		
## weight	2.189	0.200	10.95	<2e-16 ***		
## clarity	21.692	2.143	10.12	<2e-16 ***		
## color	-0.455	0.365	-1.25	0.21		
##						
## Signif. cod	es: 0 '***'	0.001 '*>	*' 0.01	'*' 0.05 '.'	0.1 ' ' 1	
##						
## Residual st	andard error:	4.7 on 3	146 degre	ees of freedo	om	
## Multiple R-	squared: 0.6	537 , Adju	usted R-s	squared: 0.6	53	
## F-statistic	: 85.5 on 3 a	and 146 DI	F, p-va	lue: <2e-16		

Example: output (2)

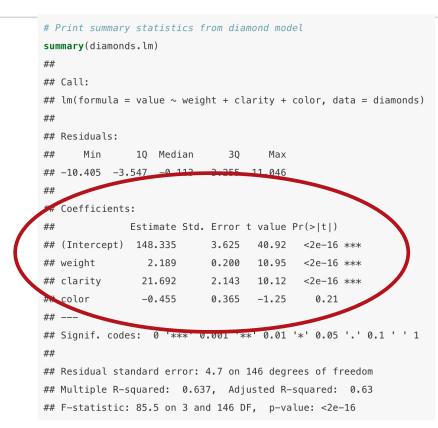
9

Print summary statistics from diamond model summary(diamonds.lm) ## ## Call: ## $lm(formula = value \sim weight + clarity + color, data = diamonds)$ ## ## Residuals: 10 Median 30 ## Min Max ## -10.405 -3.547 -0.113 3.255 11.046 ## ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 148.335 40.92 <2e-16 *** 3.625 2.189 <2e-16 *** ## weight 0.200 10.95 21.692 ## clarity 2.143 10.12 <2e-16 *** -0.455 ## color 0.365 -1.25 0.21 ## ---## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 4.7 on 146 degrees of freedom ## Multiple R-squared: 0.637, Adjusted R-squared: 0.63 ## F-statistic: 85.5 on 3 and 146 DF, p-value: <2e-16

Example: output (3)

Print summary statistics from diamond model summary(diamonds.lm) ## ## Call: ## $lm(formula = value \sim weight + clarity + color, data = diamonds)$ ## ## Residuals: 10 Median 30 ## Min Max ## -10.405 -3.547 -0.113 3.255 11.046 ## ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 148.335 3.625 40.92 <2e-16 *** 2.189 10.95 <2e-16 *** ## weight 0.200 21,692 10.12 ## clarity 2.143 <2e-16 *** ## color -0.455 0.365 -1.25 0.21 ## ----## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 4.7 on 146 degrees of freedom ## Multiple R-squared: 0.637 Adjusted R-squared: 0.63 ## F-statistic: 85.5 on 3 and 146 Dr, p value.

Example: output (4)



Standardized coefficients

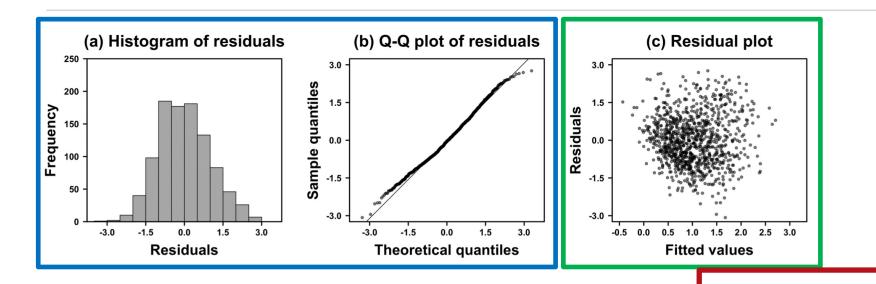
It is important to keep the metric of each variable in mind when performing multiple regression.

```
Iconicity study by Winter et al. (2017)
```

Systematicity Min -0.000481104 Max 0.000630891

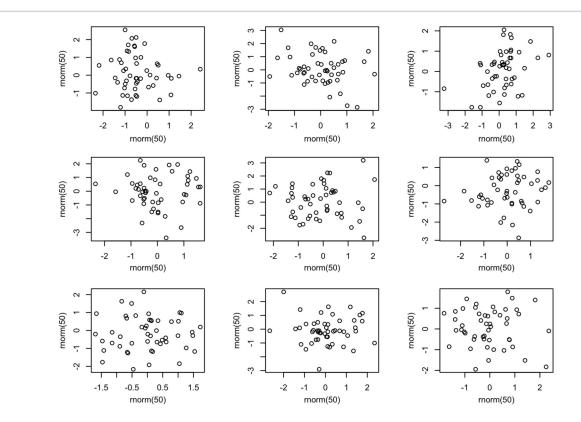

```
Iconicity ~ Sensory + Imageability + Systematicity + Word frequency
= 1.5 + 0.5*SER + (-0.3)*Imag + 401.5*Systema + (-0.3)*Word freq unstandardised
= 1.3 + 0.5*SER + (-0.4)*Imag + 0.0*Systema + (-0.3)*Word freq standardised
```

For the standardised coefficients, a one-unit change always corresponds to a change of 1 standard deviation.

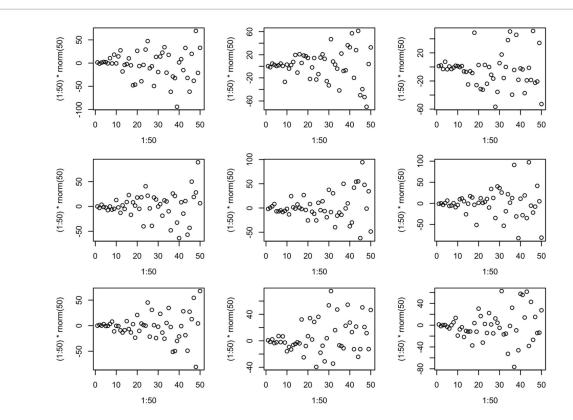


- Normality of residuals
- Homoscedasticity of residuals
- Collinearity

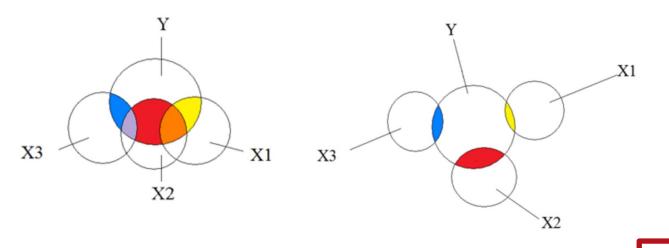
'Good' residual plots



'Bad' residual plots



Assumptions: Collinearity (1)



Moderate collinearity

No collinearity

Assumptions: Collinearity (2)

Extreme collinearity	x <– rnorm(50) y <– 10 + 3 * x + rnorm(50)	x2 <- x x2 [50] <1 $r(48) = .98$
X1	1 (Intercept) 10.093852 0.1	.error statistic p.value 283994 78.61294 2.218721e-52 125854 24.94091 3.960627e-29
X3 X2	term estimate std. 1 (Intercept) 10.181083 0.16 2 x2 2.724396 0.14	

term estimate std.error statistic p.value 1 (Intercept) 10.0794940 0.1303314 77.3374070 3.352074e-51 2 x 3.2260125 0.5599087 5.7616761 6.164895e-07 3 x2 -0.4255257 0.5582050 -0.7623108 4.496834e-01

Assumptions: Collinearity (3)

- 'Variance inflation factors' (VIFs) can be used to assess whether you have to worry about collinearity.
- VIFs > 3 or 4 are deemed problematic by some (Zuur et al., 2010). Others suggest VIFs > 10 indicate collinearity issues (Montgomery & Peck, 1992).

library(car)			
vif(xmdl_both)			
x x2 24.51677 24.51677		Г	
<pre>vif(icon_mdl_z)</pre>			
SER_z CorteseImag_z 1.148597 1.143599	Freq_z 1.020376		

Assumptions: Collinearity (4)

Solutions:

- Remove one of the predictor variables with a high VIF (use you subject knowledge to decide and justify which one).
- Collect more data as that will allow you to estimate the regression coefficients more precisely.
- Use an approach other than regression (e.g., random forests) or first do a principle component analysis to combine predictor variables before doing regression.
- Consider this issue at the planning stage of your study and make theoretically motivated choices as to which one of possibly highly correlated measures to include.

Adjusted R²

glance(icon_mdl_z)

r.squared adj.r.squared sigma statistic p.value 1 0.2124559 0.2092545 1 001714 66.36346 9.786184e-50 df logLik AIC BIC deviance df.residual 1 5 -1402.517 2817.035 2846.415 987.3758 984

- Like *R*², it measures how much of the variance in the outcome variable is described by all the predictors in the model together.
- Adjusted *R*² takes the number of predictors in the model into account.
- You should report 'adjusted $R^{2'}$.

Summary

- Regression line with multiple predictors $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n$ + error
- Standardized coefficients Make predictors more comparable by converting them to standard units, helps with interpreting coefficients
- Assumptions Normality and homoscedasticity of residuals + check collinearity
- Adjusted R^2 Takes number of predictors in model into
account, therefore more conservative,
alerts you to 'overfitting.