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Discrete or categorical outcome variables

* Response accuracy: correct or incorrect?

* Group membership: good vs. poor reader?

* Eye movement: left vs right?

* Ordered categories: Likert rating scales at the point 1,
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* Group membership (out of multiple groups): \ﬁ"n':’m?m:f.‘:;ﬁ?"“
-

participant in one of several groups like religious or
ethnic or degree class group?

* Frequency of occurrence of an event: number of
hallucinations occurring in different patient groups
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Why not model discrete events as continuous

* Forced-choice task -> inaccurate = 0, accurate = 1.

e Could calculate the proportion of accurate responses
for each participant (percent correct), and many

people do.
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» Spurious interaction effects
2. \Variance is proportional to the mean
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1. Bounded scale g
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Homoscedasticity

Homoscedasticity Heteroscedasticity
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Heteroscedasticity
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2. Variance is proportional to the mean
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Summary 1

Linear models assume outcomes are unbounded so allow
predictions that are impossible when outcomes are, in fact,

bounded as is the case for accuracy or other categorical
variables

Linear models assume homogeneity of variance but that is
unlikely and anyway cannot be predicted in advance when
outcomes are categorical variables
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Distributions

(a) Positive skew arising from a Gaussian process (b) Modeling the process that
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Bernouille distribution

Logistic regression

0© ®88&0°,°

y ~ binomial (N =1, p)
y ~ bernoulli ( p)

Speech error yes/no
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Logistic regression

Probability
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(b) Logistic regression

logistic(By + P1 * X;)

l

yi~Bernoulli(p;)
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Logistic transform

(a) Linear relationship (b) Logistic transform
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How to estimate effects of a bounded
outcome?

Transform a probability to odds
1d probability of something happening
odds =

probability of that thing not happening

Odds are continuous ranging from zero to infinity

Use the natural logarithm of the odds, because it ranges from
negative to positive infinity

probability of something happening
probability of that thing not happening

logit = In
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odds=L
1-p

log odds = log(IL)
-p



Odds and log odds
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Probability Odds Log odds (‘logits’)
0.1 0.11to 1 -2.20
0.2 0.25to 1 -1.39
0.3 0.43to 1 —0.85
0.4 0.67 to 1 —0.41
0.5 1to1 0.00
0.6 1.5t01 +0.41
0.7 233t01 +0.85
0.8 4to1 +1.39
0.9 9to 1 +2.20
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Model with interaction term (centered)

logistic function

logit(p;) =B, +Bi*x,  ogits probabilities

I

logit function
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Summary 2

* Categorical outcome variable:
— Bounded scale
— Homogeneity of variance not met

 Bernouille distribution:

y ~ bernoulli ( p)

* Transform probability to odds
* Transform odds to log odds
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Example: Speech errors and blood alcohol
concentration

Logistic regression
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Example: The data

library (tidyverse)
library (broom)

alcohol <- read csv('speech errors.csv')

alcohol

# A tibble: 40 x 2

BAC speech error
<dbl> <int>
.0737
.0973
.234
.138
.0933
.262
.357
.237
.352
.379 1

with 30 more rows
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Example: Fitting the model

alcohol mdl <- glm(speech error ~ BAC,
data = alcohol, family = 'binomial')
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tidy(alcohol mdl)

term estimate std.error statistic p.value
1 (Intercept) -3.643444 1.123176 -3.243878 0.0011791444
2 BAC 16.118147 4.856267 3.319041 0.000903273

”Blood alcohol concentration
significantly predicted the
occurrence of a speech error
(logit coefficient: +16.11, SE =
4.86,z=3.3, p =.0009).”
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Example: Interpreting the model (2)

intercept <- tidy(alcohol mdl) $estimate[1l]

slope <- tidy(alcohol mdl)Sestimate[2]
intercept

[1] -3.643444

slope

[1] 16.11815
20
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Example: Calculating predicted log odds

intercept + slope * 0 # BAC = 0

[1] -3.643444

intercept + slope * 0.3 # BAC = 0.3

[1] 1.192
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Example: Calculating probabilities

plogis (intercept + slope * 0)

[1] 0.02549508

plogis (intercept + slope * 0.3)

[1] 0.7670986
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