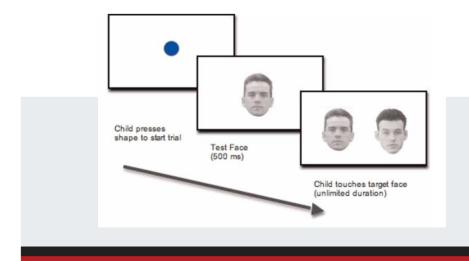


Logistic regression

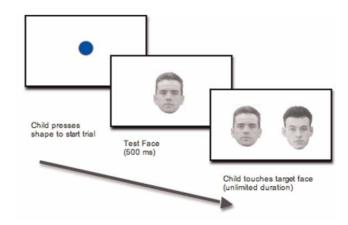


Dr. Margriet A. Groen

Discrete or categorical outcome variables

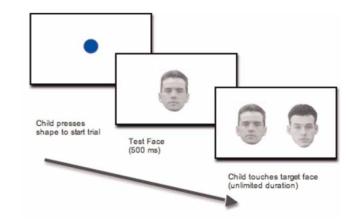
Lancaster 🚰 University

- Response accuracy: correct or incorrect?
- Group membership: good vs. poor reader?
- Eye movement: left vs right?
- Ordered categories: Likert rating scales at the point 1, 2, 3, 4, or 5?
- Group membership (out of multiple groups): participant in one of several groups like religious or ethnic or degree class group?
- Frequency of occurrence of an event: number of hallucinations occurring in different patient groups



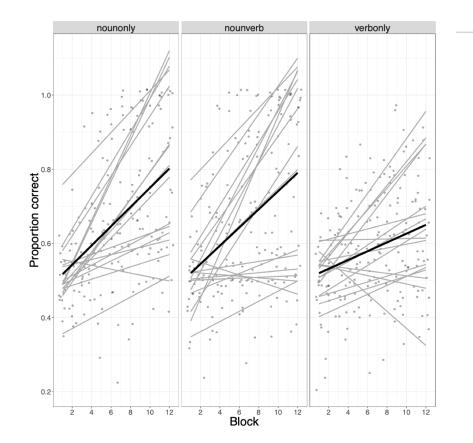
Why not model discrete events as continuous?

- Forced-choice task -> inaccurate = 0, accurate = 1.
- Could calculate the proportion of accurate responses for each participant (percent correct), and many people do.
- This is a **bad idea** because:
 - 1. Bounded scale
 - Spurious interaction effects
 - 2. Variance is proportional to the mean

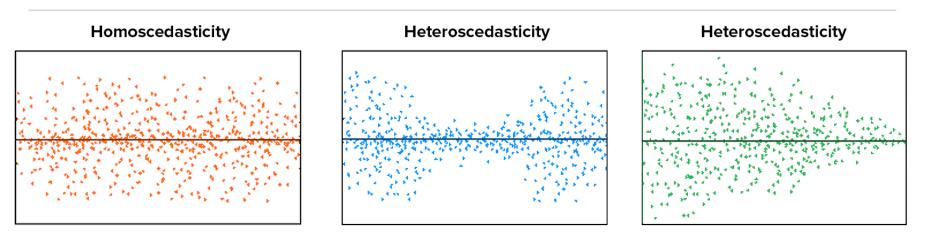


1. Bounded scale

4



Homoscedasticity

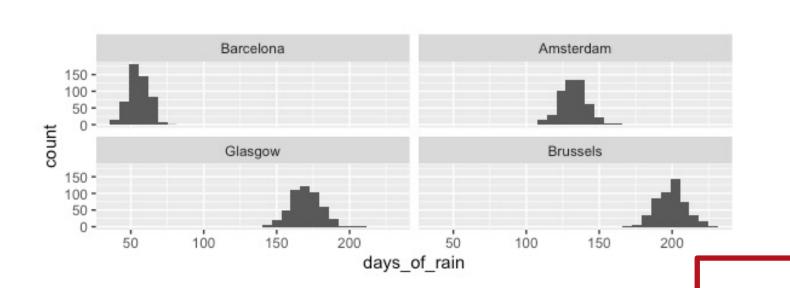


Random Cloud (No Discernible Pattern)

Bow Tie Shape (Pattern)

Fan Shape (Pattern)

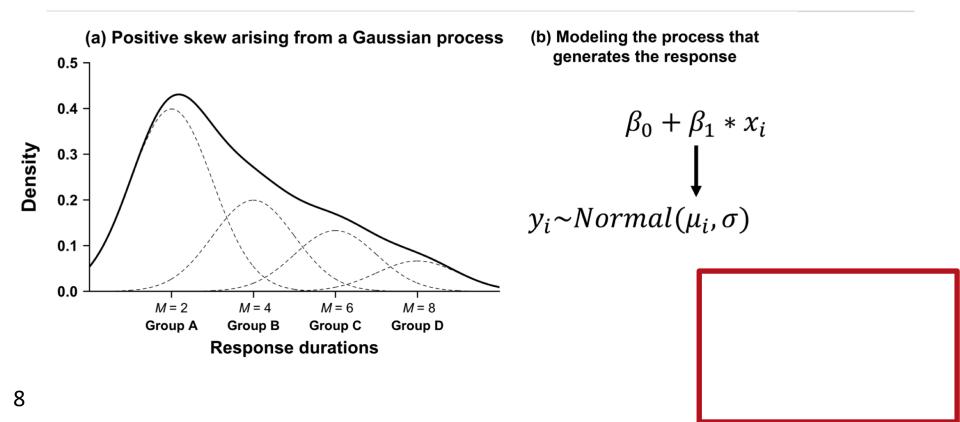
2. Variance is proportional to the mean



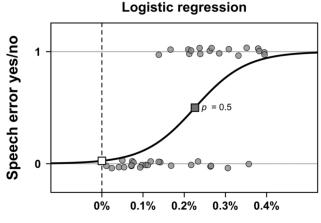
Summary 1

- Linear models assume outcomes are unbounded so allow predictions that are impossible when outcomes are, in fact, bounded as is the case for accuracy or other categorical variables
- Linear models assume homogeneity of variance but that is unlikely and anyway cannot be predicted in advance when outcomes are categorical variables

Distributions



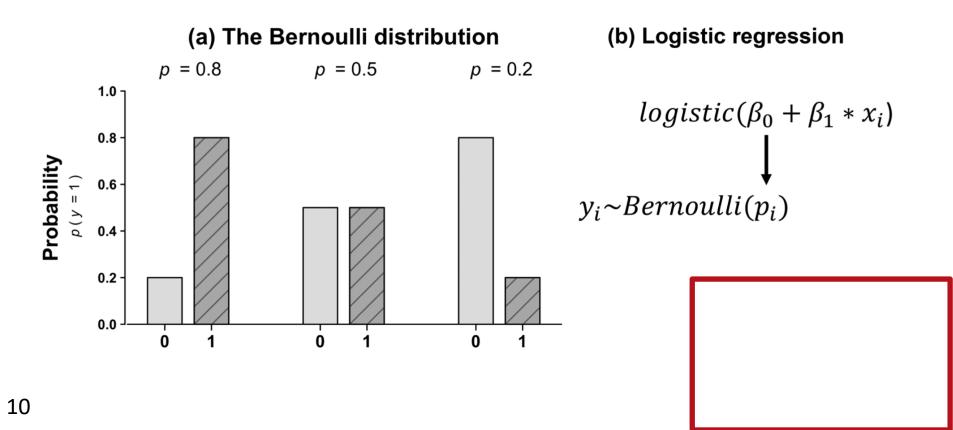
Bernouille distribution



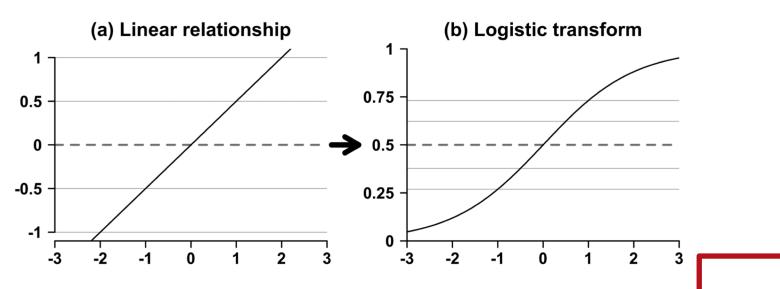
Blood Alcohol Concentration

 $y \sim binomial(N = 1, p)$ $y \sim bernoulli(p)$

Logistic regression



Logistic transform



11

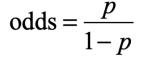
How to estimate effects of a bounded outcome?

Transform a probability to odds $odds = \frac{probability \ of \ something \ happening}{probability \ of \ that \ thing \ not \ happening}$

Odds are continuous ranging from zero to infinity

Use the natural logarithm of the odds, because it ranges from negative to positive infinity

logit = In probability of something happening probability of that thing not happening

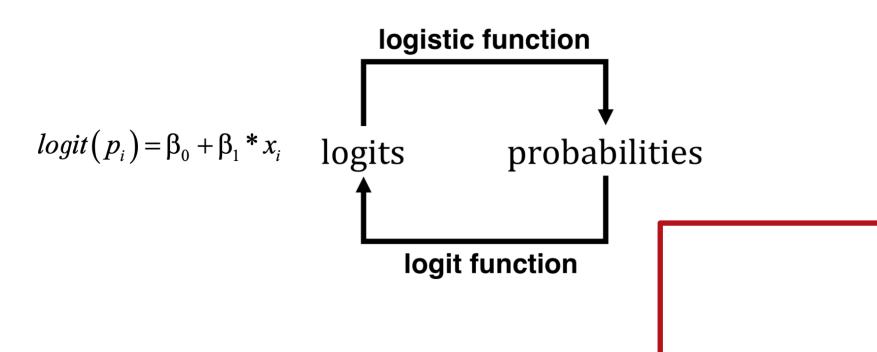


 $\log \text{ odds} = \log \left(\frac{p}{1-p}\right)$

Odds and log odds

Probability	Odds	Log odds ('logits')
0.1	0.11 to 1	-2.20
0.2	0.25 to 1	-1.39
0.3	0.43 to 1	-0.85
0.4	0.67 to 1	-0.41
0.5	1 to 1	0.00
0.6	1.5 to 1	+0.41
0.7	2.33 to 1	+0.85
0.8	4 to 1	+1.39
0.9	9 to 1	+2.20

Model with interaction term (centered)



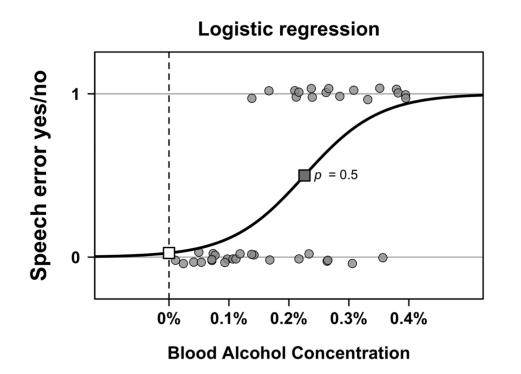
Summary 2

- Categorical outcome variable:
 - Bounded scale
 - Homogeneity of variance not met
- Bernouille distribution:

 $y \sim bernoulli(p)$

- Transform probability to odds
- Transform odds to log odds

Example: Speech errors and blood alcohol concentration



Example: The data

```
library(tidyverse)
library(broom)
```

```
alcohol <- read_csv('speech_errors.csv')</pre>
```

alcohol

```
# A tibble: 40 \times 2
      BAC speech_error
    <dbl>
                  <int>
 1 0.0737
                       0
 2 0.0973
                       0
 3 0.234
                       0
 4 0.138
                       1
 5 0.0933
                       0
 6 0.262
 7 0.357
                       0
 8 0.237
                       1
 9 0.352
                       1
10 0.379
                       1
# ... with 30 more rows
```


Example: Fitting the model

Example: Interpreting the model (1)

tidy(alcohol_mdl)

```
term estimate std.error statistic p.value
1 (Intercept) -3.643444 1.123176 -3.243878 0.0011791444
2 BAC 16.118147 4.856267 3.319041 0.000903273
```

"Blood alcohol concentration significantly predicted the occurrence of a speech error (logit coefficient: +16.11, SE = 4.86, z = 3.3, p = .0009)."

Example: Interpreting the model (2)

intercept <- tidy(alcohol mdl)\$estimate[1]</pre>

slope <- tidy(alcohol_mdl)\$estimate[2]</pre>

intercept

[1] -3.643444

slope

[1] 16.11815

Example: Calculating predicted log odds

intercept + slope * 0 # BAC = 0

[1] -3.643444

intercept + slope * 0.3 # BAC = 0.3

[1] 1.192

Example: Calculating probabilities

plogis(intercept + slope * 0)

[1] 0.02549508

plogis(intercept + slope * 0.3)

[1] 0.7670986

