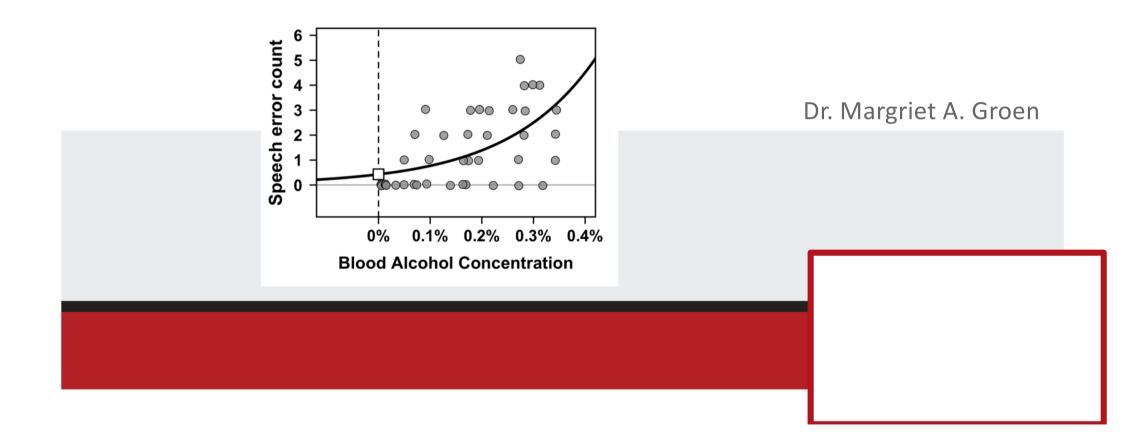


Poisson regression



Count data as outcome variable

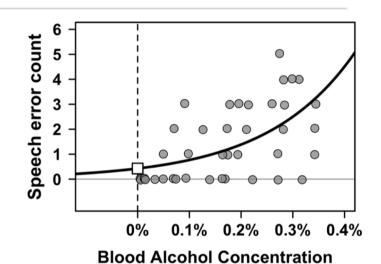
A count variable ...

... is a variable that takes on discrete values (0, 1, 2, ...) reflecting the number of occurrences of an event in a fixed period of time.

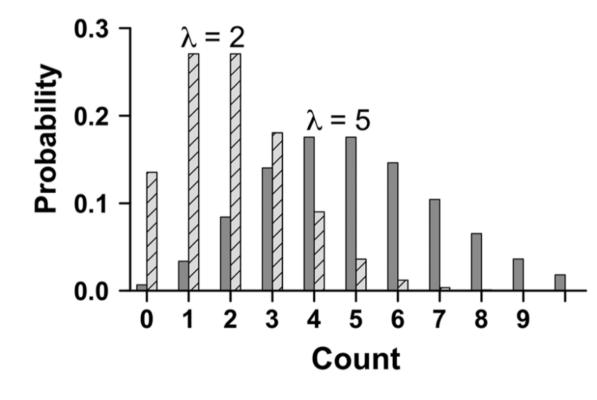
... can only take on positive integer values or zero.

Examples: Number of ...

- ... depressive symptoms that a child exhibits
- ... alcoholic drinks consumed per day
- ... readmissions to alcohol detoxification programmes
- ... disciplinary incidents among a group of prison inmates
- 2 ... fillers (such as uh and oh) as a function of politeness context

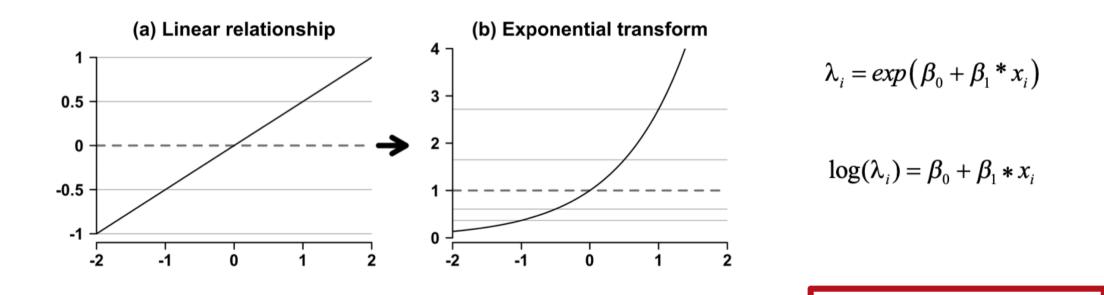


The Poisson distribution



- ... has one parameter: λ 'lambda'
- ... cannot be negative
- ... contains only integers
- ... variance is associated with λ

Exponential transformation



An example: Nettle's (1999) linguistic diversity data (1)

# A tibble: 74 x 5					
	Country	Population	Area	MGS	Langs
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<int></int>
1	Algeria	4.41	6.38	6.60	18
2	Angola	4.01	6.10	6.22	42
3	Australia	4.24	6.89	6.00	234
4	Bangladesh	5.07	5.16	7.40	37
5	Benin	3.69	5.05	7.14	52
6	Bolivia	3.88	6.04	6.92	38
7	Botswana	3.13	5.76	4.60	27
8	Brazil	5.19	6.93	9.71	209
9	Burkina Faso	3.97	5.44	5.17	75
10	CAR	3.50	5.79	8.08	94
# with 64 more rows					

range(nettle\$MGS)

[1] 0 12

An example: Nettle's (1999) linguistic diversity data (2)

filter(nettle, MGS %in% range(MGS))

A tibble: 6×5

	Country	Population	Area	MGS	Langs
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<int></int>
1	Guyana	2.90	5.33	12.	14
2	Oman	3.19	5.33	0.	8
3	Solomon Islands	3.52	4.46	12.	66
4	Suriname	2.63	5.21	12.	17
5	Vanuatu	2.21	4.09	12.	111
6	Yemen	4.09	5.72	Ο.	6

The model (1)

tidy(MGS_mdl)

7

	term	estimate	std.error	statistic	p.value
1	(Intercept)	3.4162953	0.039223267	87.09869	0.000000e+00
2	MGS	0.1411044	0.004526387	31.17375	2.417883e-213

 $\log(\lambda_i) = \beta_0 + \beta_1 * x_i$

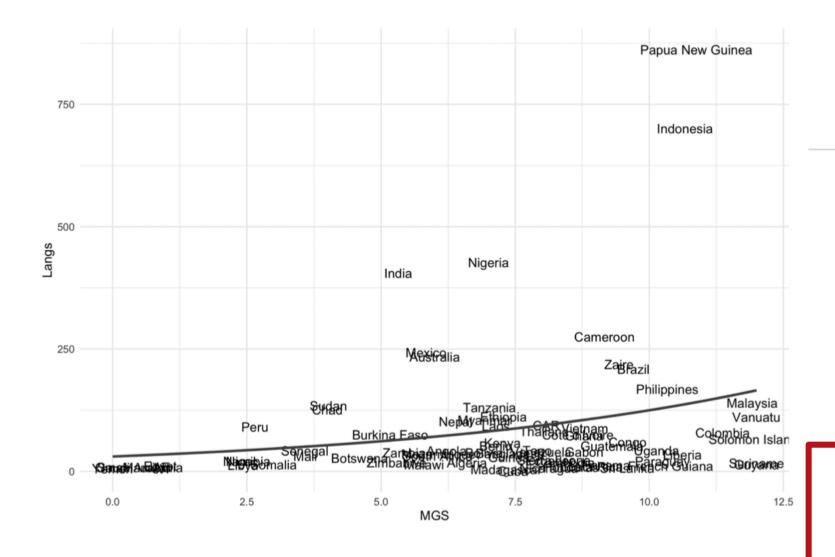
The model (2)

intercept + 0:12 * slope

[1] 3.416295 3.557400 3.698504 3.839609 3.980713 4.121818 [7] 4.262922 4.404026 4.545131 4.686235 4.827340 4.968444 [13] 5.109549

exp(intercept + 0:12 * slope)

[1] 30.45637 35.07188 40.38685 46.50727 53.55521 [6] 61.67123 71.01719 81.77948 94.17275 108.44415 [11] 124.87831 143.80298 165.59559



Exposure variables (1)

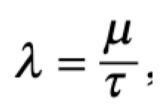
An exposure variable ...

... is a variable that potentially allows for more opportunities to observe a higher count

Examples:

space (e.g., size of a country)
time (e.g., trial duration/number of hours observed)

You can adjust a rate (count) by an exposure variable.



Exposure variables (2)

tidy(MGS_mdl)

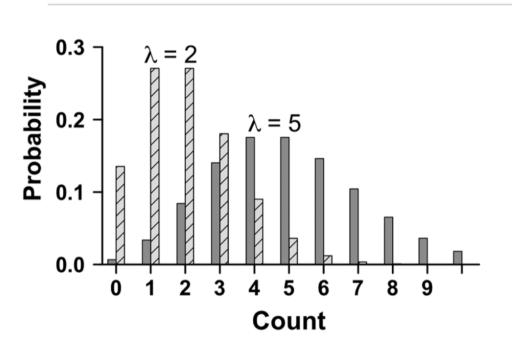
	term	estimate	std.error	statistic	p.value
1	(Intercept)	3.4162953	0.039223267	87.09869	0.000000e+00
2	MGS	0.1411044	0.004526387	31.17375	2.417883e-213

tidy(MGS_mdl_exposure)

term estimate std.error statistic p.value 1 (Intercept) -2.8230092 0.040738134 -69.29648 0 2 MGS 0.2092749 0.004719774 44.34003 0

11

Overdispersion



Variance of the Poisson distribution scales with the mean: the higher the mean rate, the more variable the counts.

If the variance is larger than theoretically expected for a given lambda, you are dealing with what's called '**overdispersion**' or 'excess variance'.


```
MGS mdl exposure <- glm(Langs ~ MGS + offset(Area),
  Negative binom
                                                data = nettle, family = 'poisson')
                         tidy (MGS mdl exposure)
                                 term estimate std.error statistic p.value
                         1 (Intercept) -2.8230092 0.040738134 -69.29648
                                                                            0
library(MASS)
                         2
                                  MGS 0.2092749 0.004719774 44.34003
                                                                            0
# Fit negative binomial regression:
MGS mdl nb <- glm.nb(Langs ~ MGS + offset(Area),
                    data = nettle)
tidy (MGS mdl nb)
         term estimate std.error statistic
                                                   p.value
   (Intercept) -3.0527417 0.26388398 -11.568500 5.951432e-31
1
2
              0.2296025 0.03418441 6.716585 1.860333e-11
         MGS
```


Negative binomial regression

```
library(pscl)
```

Perform overdispersion test:

```
odTest(MGS_mdl_nb)
```

```
Likelihood ratio test of HO: Poisson, as restricted NB
model:
n.b., the distribution of the test-statistic under HO is
non-standard
e.g., see help(odTest) for details/references
Critical value of test statistic at the alpha= 0.05 level:
2.7055
```

Chi-Square Test Statistic = 5533.0321 p-value = < 2.2e-16

Generalized Linear Model Framework

$$I(\beta_0 + \beta_1 * x_i)$$

$$\downarrow$$

$$y_i \sim Normal(\mu_i, \sigma)$$

Linear regression

Logistic regression

Poisson regression

15

Summary

- You have learned how to model count data with **Poisson** regression, and its extension, negative binomial regression.
- The coefficients of a Poisson model are shown as log coefficients, which means that, after calculating the log predictions, you need to use exponentiation to interpret your model in terms of average rates.
- To control for differential exposure, **exposure variables** can be added.
- Negative binomial regression was used to account for **overdispersion**.
- Each GLM has three components: a **distribution** for the datagenerating process, **a linear predictor** and **a link function**.

