

Where we are going: linear mixed-effects models

- ${\scriptstyle \bullet}$ We need to learn how to estimate the effects of experimental variables
- while also taking into account sources of error variance like
 - the random differences between people we test

es (Lancaster University) PSYC402-week-18-LME-2

• and the random differences between stimuli we present

The wider scientific impact – accepting diversity

- How do psychological effects vary?
- Uniformity is a common because convenient assumption
- We ask: How do people vary in their response?

The data we will work with: the CP study data

- As part of our lab work, we will practice steps often required to get data ready for mixed-effects model
- CP studied how 62 children read 160 words
- The data are in separate files and the files are untidy
 - CP study word naming rt 180211.dat reaction time for correct responses to word stimuli in reading
 - CP study word naming acc 180211.dat accuracy for all responses to word stimuli in reading
 words.items.5 120714 150916.csv information about the 160 stimulus
 - words presented in reading task
 all.subjects 110614-050316-290518.csv information about the 62
 - participants

PSYC402-week-18-LME-2

We will make data tidy

• What a horrible mess:

- Psychological data collection often delivers untidy data
- Here, we have data for different participants in separate columns
 Each row holds the reaction times for the responses made by all
- participants to each stimulus word
- Each cell holds the reaction time for the response made by a child to a word
- We have missing values NA and reaction times

A tibble: 6 x 62

7/36

##		item_name	AislingoC	AlexB	AllanaD	AmyR	AndyD	AnnaF	Aoif€
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<db]< td=""></db]<>
##	1	act	595.	586	NA	693	597	627	649
##	2	ask	482.	864	1163	694.	616	631	538
##	3	both	458.	670	1114.	980	1019	796.	548
##	4	box	546	749.	975	678	589	604	574
##	5	broad	580	1474.	NA	789	684	NA	816
Roh	Dav	vies (Lancaster Univer	rsity) FAG	SYC402-wee	k-18-I ME-2	045	700	~~~	8/36

Next: When we do we need mixed-effects models?

When we do we need mixed-effects models? When we have repeated measures data

- In a reading study, we ask all individuals in a participant sample to read all words in a stimulus sample
- For each individual, we will have multiple observations and these observations will not be independent
 - One participant will tend to be slower or less accurate compared to another
 - $\bullet\,$ Her responses may be more or less susceptible to the effects of the experimental variables
- The observed responses in different trials can be grouped by participants

PSYC402-week-18-LME-2

PSYC402-week-18-LME-2

When we do we need mixed-effects models? When we have repeated measures data

- In a reading study, we ask all individuals in a participant sample to read all words in a stimulus sample
- For each stimulus, there are multiple observations and these observations will not be independent
 - One stimulus may prove to be more challenging to all participants compared to another, eliciting slower or less accurate responses
 - The effects of within-items experimental variables may be more or less prominent for responses to some stimuli than to others
- So the data can also be grouped by stimuli

waap weath weave wert whak wide width wile will

PSYC402-week-18-LME-2

BT

The language-as-fixed-effect fallacy

- If you are doing a repeated measures design study in which there are different participants
- And different tests or test items or stimuli
- And all participants respond to all stimuli
- Then you need to use mixed-effects models
- Because you need to deal with the random differences between people and the random differences between stimuli

PSYC402-week-18-LME-2

14 / 36

The language as fixed effect fallacy

Taking into account error variance due to subjects and items – Clark's (1973) *minF'* solution

17 / 36

13/36

Using tidyverse functions, it is easy to calculate by-subjects and by-items RT averages

- or we can join the by-subjects data with participant attributes and analyze the effects of those attributes (e.g. participant group)
- We cannot look at *both* item and participant effects at the same
 Davies (Lancaster University)
 PSYC402-week-18-LME-2

But analysing data only by-items means we lose track of participant differences

PSYC402-week-18-LME-2

- Lorch & Myers (1990) warn: analyzing just by-items mean RTs assumes wrongly that subjects are a fixed effect
- We can see this is wrong because, for example, with the CP data, we can see that participant RT varies substantially

21/36

23/36

We account for differences between participants in slope by modelling the slope of effects as two terms

PSYC402-week-18-LME-2

$$\beta_{1i} = \gamma_1 + U_{1i} \tag{3}$$

- $\bullet\,$ Where γ_1 is the average slope
- And *U*_{1*i*} represents the difference for each *i* child between the slope of *their* frequency effect and the average slope

PSYC402-week-18-LME-2

We account differences between items in intercepts by modelling the intercept as two terms

PSYC402-week-18-LME-2

$$\beta_{0j} = \gamma_0 + W_{0j} \tag{4}$$

- Where γ_0 is the average intercept
- And ${\it W}_{0j}$ represents the deviation, for each word, between the word <code>intercept</code> and the average intercept

PSYC402-week-18-LME-2

Our model can now incorporate the random effects of *both* participants and words

We can do all this in one move using Imer()

 $Y_{ij} = \gamma_0 + \gamma_1 X_j + U_{0i} + U_{1i} X_j + W_{0j} + e_{ij}$ (5)

- Where the outcome Y_{ij} is related to ...
- The average intercept γ_0 and differences between i children in the intercept U_{0i} ;
- The average effect of the explanatory variable frequency $\gamma_1 X_j$ and differences between *i* participants in the slope $U_{1i}X_j$;
- $\bullet\,$ Plus the random differences between items in intercepts W_{0j}
- And the residual error variance e_{ij} .

vies (Lancaster University) PSYC402-week-18-LME-2

PSYC402-week-18-LME-2

26 / 36

30 / 36

(1 item_name),

data = long.all.noNAs)

summary(lmer.all)

29 / 36

25 / 36

We can do all this in one move using Imer()

b Davies (Lancaster University) PSYC402-week-18-LME-2

- We add the term (...litemname) to specify random effects corresponding to random differences between sample groups (here, items) coded using the itemname variable name
- We add (1 |itemname) to account for random differences between sample groups (words) in intercepts, coded 1

We usually do not aim to examine the specific deviations

We estimate just the $\textit{spread of deviations}\xspace$ by-participants or by-words: the $\textit{variance}\xspace$

- var(U_{0i}) variance of deviations by-participants from the average intercept;
- $var(U_{1i}X_j)$ variance of deviations by-participants from the average slope of the frequency effect;
- $var(W_{0j})$ variance of deviations by-items from the average intercept;
- $\bullet \ var(e_{ij})$ residuals, at the response level, after taking into account all other terms.

aster University) PSYC402-week-18-LME-2

Expect random effects will covary

- Participants who are slower to respond also show the frequency effect more strongly
- The scatterplot shows the relationship between per-participant estimates of
- The intercept and the slope
- The strong relationship is clear

ob Davies (Lancaster University)

Ho	ow do you report a mixed-effects model?									
## 3	Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## 3	lmerModLmerTest]									
## 3	Formula: RT ~ Lg.UK.CDcount + (Lg.UK.CDcount + 1 subjectID) + (1									
##	item_name)									
##	Data: long.all.noNAs									
##	~									
## 3	REML criterion at convergence: 116976.7									
##	-									
## :	Scaled residuals:									
##	Min 1Q Median 3Q Max									
##	-4.1794 -0.5474 -0.1646 0.3058 12.9485									
##										
## 3	Random effects:									
##	Groups Name Variance Std.Dev.									
##	item_name (Intercept) 3397 58.29									
##	subjectID Lg.UK.CDcount 3623 60.20									
##	subjectID.1 (Intercept) 112307 335.12									
##	Residual 20704 143.89									
## 3	Number of obs: 9085, groups: item_name, 159; subjectID, 61									
##										
## 3	Fixed effects:									
##	Estimate Std. Error df t value Pr(> t)									
##	(Intercept) 971.07 51.86 94.62 18.723 < 2e-16 ***									
## 1	Lg.UK.CDcount -72.33 10.79 125.27 -6.703 6.23e-10 ***									
**										
	Signifi codes. 0 +++ 0.001 ++ 0.01 + 0.05 . 0.1 1									
== .	Correlation of Fixed Effects.									
##	(Intr)									
## 1	Lg.UK.CDcnt -0.388									
Ro	ob Davies (Lancaster University) PSYC402-week-18-LME-2	32 / 36								

How do you report a mixed-effects model?

• Explain what variables went into the analysis: say what the outcome and predictor variables were

PSYC402-week-18-LME-2

- Report the model equation RT \sim frequency + (frequency + 1 || participant) + (1 | word)
- $\bullet\,$ Report a table of coefficients: variable, estimate of coefficient of effect; SE; t (or z); and p
- Add to that table a report of the random effects terms: variances
- You should comment on the coefficient estimates; you may (or may not) comment on the random effects variances

Rob Davies (Lancaster University) PSYC402-week-18-LME-2

33 / 36

35 / 36

31 / 36

Next week: we need to be ready to trouble shoot

- I stopped the model from estimating the covariance between random effects of participants on items and on slopes
- using (frequency + 1 || participant) not (frequency + 1 | participant)
 next week I explain why: convergence

PSYC402-week-18-LME-2

Summary - Week 18: crossed random effects

- Psychological studies often have repeated measures designs
 - When there are multiple observations for each person or stimulus
 - Because each person has to respond to multiple stimuli
- And each stimulus is shown to multiple people
 Mixed-effects models can be specified by the researcher
 - to account for random differences between participants or between
 - to account on random universities between participants or between stimuli
 in the intercepts or the slopes of explanatory variables

- Human diversity and how people vary: the challenge, the promise $% \left({{{\mathbf{r}}_{i}}} \right)$
 - Variation is a fact and mixed-effects models enable us to take into account random differences between people
 - But these models also allow us this is new to examine the nature of the variation directly

lavies (Lancaster University) PSYC402-week-18-LME-2

36 / 36