PSYC234: Lecture 7 post-lecture worksheet

This worksheet is to help you consolidate what you learned about the Kruskal-Wallis test and Friedman's ANOVA during Lecture 7. It contains two activities.

This worksheet could be completed as part of the independent study hours for PSYC234. It is optional but recommended. It is recommended that you complete this worksheet in advance of the WBA.

Once you have finished, compare your answers to the answer sheet provided on Moodle. You can also use this sheet and the answer sheet for revision purposes when preparing for the class test.

Activity 1: Understanding how the non-parametric tests differ and when to use them

It is really important that you understand which statistical test you should run in different situations. Fill in the tables below based on the research design. In each scenario, you are interested in whether the type of chocolate eaten affects feelings of contentment (response = 0-100).

Design	How would you check	If the assumption of
	whether the assumption	normality is violated, which
	of normality is violated	non-parametric test would
	for this design?	you run?
You recruit 20 participants. On	Assess whether the	Friedman's ANOVA
day 1, they eat milk chocolate.	assumption of normality	
On day 2, they eat dark	is violated per condition	
chocolate. On day 3, they eat		
white chocolate.	This can be done using Q-	
	Q plots and the Shapiro-	
	Wilk test	
You recruit 12 participants and	Assess whether the	Kruskal-Wallis test
randomly assign them to either	assumption of normality	
a "white chocolate", "milk	is violated per group	
chocolate", or "dark chocolate"		
group.	This can be done using Q-	
	Q plots and the Shapiro-	
	Wilk test	
You recruit 7 participants. On	Calculate a difference	Wilcoxon signed-rank test
day 1, they eat milk chocolate	score for each participant	
and on day 2, they eat dark	(Timepoint 1 – Timepoint	
chocolate.	2)	

	Assess whether the assumption of normality is violated for the "difference"	
	This can be done using Q- Q plots and the Shapiro- Wilk test	
You recruit 10 participants and randomly assign them to either a "white chocolate" or "milk chocolate" group.	Assess whether the assumption of normality is violated per group	Wilcoxon rank-sum test
	This can be done using Q- Q plots and the Shapiro- Wilk test	

Activity 2: Interpreting R output

Interpret the following R output. Part 1 uses an independent groups design, whilst part 2 uses a repeated measures design.

Part 1: An independent groups design

You are a developmental researcher interested in whether the books children are exposed to affects their language production (how many words they can say). You recruit 21 2-year-old children and assign them to one of three groups – "Pinocchio", "Cinderella", and "Gruffalo". The children's parents then read this story every day for three months (i.e. children in the "Gruffalo" group read the Gruffalo every day). You then ask their parents to complete a language production assessment on their child (score = 0-100).

Testing the assumption of normality:

Interpretation:

The Q-Q plot and the Shapiro-Wilk test suggests that the assumption of normality is violated for the Pinocchio group. Data in the Cinderella and Gruffalo group does not appear to violate the assumption.

1B: Interpret the descriptive statistics and the model output

Des	scri	ptive	e st	atis	stics	:	
77	~	LLD	1.1			~	

	Book	med_words	min_words	max_words		
	<fct></fct>	<int></int>	<i><int></int></i>	<int></int>		
1	Cinderella	16	12	18		
2	Gruffalo	67	61	69		
3	Pinocchio	25	21	58		

Model output:

Kruskal-Wallis rank sum test

data: Words by Book
Kruskal-Wallis chi-squared = 17.853, df = 2, p-value = 0.0001328

Post-hoc tests:

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method. Comparison Z P.unadj P.adj 1 Cinderella - Gruffalo -4.225276 0.00002386477 0.00007159432 2 Cinderella - Pinocchio -2.112638 0.03463174827 0.06926349653 3 Gruffalo - Pinocchio 2.112638 0.03463174827 0.03463174827

What can we conclude? Report in APA format.

The Kruskal-Wallis test revealed a significant effect of book on the language production score, H(2) = 17.85, p < .001. Post-hoc comparisons were conducted using Dunn's test, with p-values corrected using Bonferroni-Holm. There was a significant difference between the Cinderella (median = 16; range = 12-18) and the Gruffalo groups (median = 67; range = 61-69), with participants in the Gruffalo group achieving a significantly higher score (p < .001). Participants in the Gruffalo group also achieved a significantly higher score than participants in the Pinocchio group (median = 25; range = 21-58; p = .035). No significant difference was observed between the Cinderella and the Pinocchio groups (p = .069).

Part 2: A repeated measures design

You are a researcher interested in whether the number of hours sleep individuals get affects their performance on an attention task (score = 0-100). You recruit nine participants, with all participants taking part in three conditions. In the first condition, participants get 6 hours sleep the night before (6 hours). In the second condition, they get 8 hours sleep the night before (8 hours), and in the third condition, they get 10 hours sleep the night before (10 hours).

2B: Testing the assumption of normality

What can we conclude?

Data in the 6 hour condition appears to violate the assumption of normality.

2B: Interpret the descriptive statistics and the model output

Descriptive statistics:

Model output:

Friedman rank sum test

data: as.matrix(sleep_data_reduced)
Friedman chi-squared = 13.556, df = 2, p-value = 0.001139

Post-hoc tests:

```
Pairwise comparisons using Conover's all-pairs test for a two-way balanced complete block design

data: y, groups and blocks

eight_hours six_hours

six_hours 0.817 -

ten_hours 0.015 0.014

P value adjustment method: holm
```

What can we conclude? Report in APA format.

A Friedman's ANOVA revealed a significantly effect of sleep hours on the attention score, $X_F^2(2) = 13.56$, p = .001. Post-hoc comparisons were then conducting using the Conover test, with p-values corrected using Bonferroni-Holm. A significant difference emerged between the 6 hour (median = 54; range = 46-89) and the 10 hour conditions (median = 95; range = 91-99; p = .014), with participants performing better in the 10 hour condition. There was also a significant difference between the 8 hour (median = 73; range = 66-81) and the 10 hour conditions (p = .015). No significant difference emerged between the 6 hour and 8 hour conditions (p = .817).